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Undeniable impact of data science

The success of data science 
+ machine learning in…   
…pattern recognition for images, 
…reinforcement learning for games, 
…or generative large language models,

does not immediately imply 
utility for the process industry
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Major successes supported 
by very large datasets (AlexNet, ChatGPT), 

or accurate simulations (AlphaGo)
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Challenges in process industry

Process data: 

• Dynamic (comparatively) low volume
• Noisy, missing, censored, faulty
• Low observability (measurements vs states)

• Amenable to simulation (sometimes)

Major successes supported 
by very large datasets (AlexNet, ChatGPT), 

or accurate simulations (AlphaGo)
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Every data driven problem isn’t solve by a deep neural net…
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Challenges in process industry

Every data driven problem isn’t solve by a deep neural net…
… so now what?
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Variety and (perceived) opacity of ML 
algorithms lead to faulty insights (sometimes)

• Recent paper considered 
bio-energy yields of crops (not SA)

• Variety of ML algorithms assessed
• Feature selection, cross-validation 

for hyperparameter optimization, 
hold-out test set

• Best performing model: 
• k-nearest neighbour with k = 2 
• Features = province, crop type, 

weather and humidity
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Different names for the same thing…

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html

Gaussian Process Regression!

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html
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Different names for the same thing…

Gaussian Process Regression!

“A statistical approach to some basic mine 
valuation problems on the Witwatersrand”

Danie Krige (Kriging)
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Different names for the same thing…

By Guillaume.lozenguez - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=53916253

Dynamic Bayesian Network!

https://commons.wikimedia.org/w/index.php?curid=53916253
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Different names for the same thing…

“A new approach to linear filtering 
and prediction problems” 

Rudolf Kalman

Dynamic Bayesian Network!
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Bringing innovations in ML to bear on 
process modelling, monitoring, and control

• Starting from a firm foundation in established fields 
(system identification, state estimation, statistical process control)

• Develop an understanding of innovations in machine learning, 
understanding the application thereof to Process Eng problems 
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Bringing innovations in ML to bear on 
process modelling, monitoring, and control
• Purely data-driven approach to 

identify process modes linked 
to (retrospective) KPIs and 
modal shifts

• Online identification of current 
process mode as well as optimal 
reachable mode
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Bringing innovations in ML to bear on 
process modelling, monitoring, and control
• Purely data-driven approach to 

identify process modes linked 
to (retrospective) KPIs and 
modal shifts

• Online identification of current 
process mode as well as optimal 
reachable mode

• Data overlap limits modal 
identification

1086420246810
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Bringing innovations in ML to bear on 
process modelling, monitoring, and control
• Feature extraction to 

provide separability:
• Kernel methods 

transform data to infinite 
dimensional space

• Deep learning extracts 
features through 
multiple non-linear 
transformations



Engineering · EyobuNjineli · Ingenieurswese

Bringing innovations in ML to bear on 
process modelling, monitoring, and control
• Feature extraction to provide separability:

• Kernel methods transform data to infinite 
dimensional space

• Deep learning extracts features through 
multiple non-linear transformations

• State estimation can be used for feature 
extraction to enhance classification

• Example: hazardous event detection
• Future work: combine with advances in 

Dynamic Bayesian Networks to estimate 
discrete states (e.g., sensor health)
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Bringing innovations in ML to bear on 
process modelling, monitoring, and control

• Variational inference in 
Gaussian Process Regression 
enables computationally efficient 
co-kriging (multiple outputs)
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Bringing innovations in ML to bear on 
process modelling, monitoring, and control

• Variational inference in 
Gaussian Process Regression 
enables computationally efficient 
co-kriging (multiple outputs)

• Coupled with kriging developed 
for flow connected systems 
(e.g., pollutants in river network)
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Bringing innovations in ML to bear on 
process modelling, monitoring, and control

• Variational inference in 
Gaussian Process Regression 
enables computationally efficient 
co-kriging (multiple outputs)

• Coupled with kriging developed 
for flow connected systems 
(e.g., pollutants in river network)

• Inclusion of censored data:
measurements outside of 
measurement range 
(not zero, but not known)
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Bringing innovations in ML to bear on 
process modelling, monitoring, and control

• Variational inference in 
Gaussian Process Regression 
enables computationally efficient 
co-kriging (multiple outputs)

• Coupled with kriging developed 
for flow connected systems 
(e.g., pollutants in river network)

• Inclusion of censored data:
measurements outside of 
measurement range 
(not zero, but not known)

Future work: ensure inferred measurements 
obey conservation laws (i.e., data reconciliation)
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We aim to develop the tools to replace process historians 
containing noisy, corrupt, censored, faulty, measured data 

with labelled distributions over fundamental state variables 
satisfying mass/energy balances and physical laws

VALUE PROPOSITION
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Data Analytics and Machine Learning at 
Chemical Engineering

• Continually identifying new 
opportunities to apply innovations
in ML to process industry 
through PhD and research M.Eng

• 2024: structured M.Eng (Chemical) 
with focus area Data Analytics

• Collaboratively developed with 
industry

• Aimed at working engineers 
studying part-time

• Equip engineers with fundamentals 
of data science enabling 
application in the context of 
integrated industrial processes
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Thank you
Enkosi
Dankie

Photo by Stefan Els
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