

forward together sonke siya phambili saam vorentoe

Image Processing

From Virtual Reality to Deep Learning

Dr Rensu Theart

Image Processing

- Is the use of a computer to process **digital images** through an **algorithm**.
- A camera is simply a light measuring device (CCD or CMOS sensor).

Images only contain three colour components

Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

forward together sonke siya phambili saam vorentoe

• Camera sensors are designed to capture RGB.

RGB Example

forward together sonke siya phambili saam vorentoe

Combined (RGB)

Red Component

Green Component

Blue Component

Pixels and RGB values

Pixels and RGB values

forward together sonke siya phambili saam vorentoe

(A) Original image

(B) Enlarged view from (A)

(C) Pixel values from (B)

53	191	239	241	255	225	181	111	61	180	255	255
		168	244	255	243	210	119	85	176	244	252
71		45	161	246	227	206	99	60	158	255	255
137		42		143	214	199	138	125	185	255	255
172	99	78		72	106	149	153	190	183	252	255
200	129	102	41	64	65	95	166	206	200	255	255
255	153			49		44	145	187	219	255	255
255	227	145	42		58	71	106	91	202	255	255
255	255	242	129	107	48		95	57	162	255	255
255	255	255	189	78			74	60	119	228	255
255	255	255	246	133	65	73		129	136	144	247
255	255	253	229	112	40			111	175	93	183

Mitochondria

Mitochondrial events

forward together sonke siya phambili saam vorentoe

An illustration of the different types of mitochondrial events

What we wanted to achieve

Why?

- Mitochondrial disorders are often presented as neurological disorders such as Alzheimer's disease.
- Fission/fusion events play a critical role in maintaining functional mitochondria when cells experience metabolic or environmental stresses.
- Having a system that can automatically predict the number of mitochondrial events as well as their location will help researchers gain insights mitochondrial function which in turn could lead to improved treatment of neurological disorders.

What we want to achieve

We need ground truth

forward together sonke siya phambili saam vorentoe

• Use time-lapse sequence to generate ground truth

Mitochondrial event localiser

*If two arrows pass into a box, the function is called twice

Example output

What we want to achieve

Gradient Descent

• Sometimes the objective function/loss function has more than one minima.

Results

Virtual Learning Experience improves learning

forward together sonke siya phambili saam vorentoe

Figure 6.8: Box plots of pre- and post-lesson test scores for the VLE and Slideshow Group.

3D pose estimation

4 camera views (new system)

forward together sonke siya phambili saam vorentoe

Reconstructed 3D pose

Reconstruction error for markerless system

Stellenbosch

UNIVERSITY IYUNIVESITHI

UNIVERSITEIT

forward together sonke siya phambili

saam vorentoe

Spatial-Temporal Graph Convolutional Networks (ST-GCN) for metric learning

forward together sonke siya phambili saam vorentoe

Figure 6.4: The metric GCN model. Illustration of the GCN feature extractor as a feature encoder in a metric learning paradigm.

One-shot action recognition on 7 never before seen classes

Figure 6.6: Confusion matrix for the final one-shot tests in the seven SU-EMD classes.

Improving Face Recognition of Individuals with Highly Pigmented skin

forward together sonke siya phambil saam vorentoe

- 545 individuals
- 5 different orientations

VGG16										
	Optimiser	Visible		Infrared	Full Spectrum					
		Accuracy	AUC	Accuracy	AUC	Accuracy	AUC			
	Adam	97.3	0.986	99.7	0.993	99.1	1.000			
	SGD	97.6	0.985	99.7	0.986	99.4	1.000			
	AdaGrad	97.3	0.986	99.7	1.000	99.1	1.000			
ResNet50										
	Optimiser	Visible		Infrared		Full Spectrum				
		Accuracy	AUC	Accuracy	AUC	Accuracy	AUC			
	Adam	0.0	-	0.3	-	0.0	-			
	SGD	97.9	0.991	99.7	0.998	99.1	1.000			
	AdaGrad	97.9	0.994	98.4	0.988	99.1	0.990			

Table 4: Accuracy for a model with fine-tuned weights.

Conclusion: Using infrared light improves the accuracy of face detection algorithms

forward together sonke siya phambili saam vorentoe

Figure 4: Example of activation map produced from a CNN model, and how it can be overlaid on the original image.

Figure 13: Comparison of average activation intensity values over facial regions.

Acknowledgements

Alex Muthua

James de Villiers

Michael Deyzel

Heino Laubscher

