

Stellenbosch university iyunivesithi universiteit

Planning for Electric Mobility in Sub-Saharan Africa

Electric mobility - A complex interdependent web

Electric mobility - Impacts

Electric mobility - Vehicles

Vehicle options - new vehicle

- Higer imported
- Not yet roadworthy

Stellenbosch

87.50

Vehicle options - retrofit

- Quantum Ses'Fikele
- Over 1,500 km driven

mineral resources & energy Department: Mineral Resources and Energy REPUBLIC OF SOUTH AFRICA

Electrifying public transportation vehicles in Sub-Sharan Africa

Operating cost per 100 km:

Engineering · EyobuNjineli · Ingenieurswese

Vehicle options

	Higer	Retrofit
Model	2023	2009
Motor	90 kW / 300 Nm	90 kW / 200 Nm
Battery	70 kWh	54kWh
Laden weight	3,980 kg	3,150 kg
Cost (one)	R1 500 000	R750 000
Cost (scale)	R1 500 000	R450 000

Video comparison

bit.ly/etaxicompare

Electric mobility - Infrastructure

Electric mobility - The driver

Stellenbosch JNIVERSITY YUNIVESITHI

Operations - as is

Infrastructure - grid impact

Infrastructure - grid impact with scheduling

- Power peaks overlap with problematic grid peaks
- Grid impact reduced
- Grid impact reduced
 Using stationary battery 60kWh/taxi, 9.5 kW_{pk}/taxi sol[§]/_{pk} r₆₀₀
- Peak load down 69%: 13 to 4 kW/taxi
- Energy down 47%: 87 to 47 kWh/taxi

Scheduling - alternatives

Multi-Depot Charging

27 EVs (6370km)

Scheduling - mixed fleets

Only EVs 27 EVs (6370km)

Mixed fleet 22 EVs and 1 diesel (4198km)

Agent-based modelling of drivers

• ??

The just energy transition

Overnight locations of taxis

Overall				
	"Coloured"	African	Totals	
Intra-city	204 (86%)	17 (19%)	221 (67%)	
Inter-city	32 (14%)	75 (81%)	107 (33%)	
Totals	236 (72%)	92 (28%)	328	

The just energy transition

(a) Dataset vehicle-day distance distribution

(b) Trip-type vehicle-day distance distribution

Thank you Enkosi Dankie

ev.sun.ac.za

Photo by Stefan Els