

Reverse Logistics for Lithium-Ion Battery Recycling

2023 Stellenbosch Engineering Industry Showcase, Sandton

Prof Louis Louw, Department of Industrial Engineering

Growth in lithium-ion batteries

• Global demand for lithium-ion batteries is increasing, driven largely by the imperative to reduce climate change through electrification of mobility and the broader energy transition.

Source: https://www.udemy.com/course/electric-and-hybrid-vehicle-engineering/

Source: https://www.teriin.org/blog/why-battery-energy-storage-key-renewables-growth

Global demand for lithium-ion batteries will be over 3,100 GWh in 2030

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Sources: Avicenne, Fraunhofer, IHS Markit, Interviews with market participants, Roland Berger

Establishing value chain circularity

- Moving from fossil-fuel based to electric mobility is a clear positive for the environment, but overhauling our transportation system requires new supply chains to be designed and scaled.
- With this challenge comes an opportunity—to scale a supply chain that is more stable, more resilient, more efficient, and more sustainable than that of the fossil-fuel and internal combustion engine (ICE) vehicle industry.

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Our 2030 vision for the battery value chain focuses on resiliency, sustainability, and circularity.

¹CtCO₂e equals one billion tons of carbon dioxide equivalent. Source: McKinsey & Company

McKinsey & Company

Establishing value chain circularity

• The battery industry has to move from a linear to a circular value chain—one in which used materials are repaired, reused, or recycled.

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

• Battery recycling is the key to pursuing that opportunity

Establishing value chain circularity

The global supply of EV batteries for recycling is steadily increasing, driven primarily by production scrap before 2030 and end-of-life batteries after 2030.

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

McKinsey & Company

Lithium-ion battery cell components and geometries

Source: https://www.teriin.org/blog/why-battery-energy-storage-key-renewables-growth

Commonly used cell geometries for battery pack construction: a) cylindrical cell, b) prismatic cell, c) Pouch cell

Stellenbosch

UNIVERSITY IYUNIVESITHI

UNIVERSITEIT

Engineering · EyobuNjineli · Ingenieurswese

Lithium-ion battery chemistries and materials

		• BYD	• Toyota Volksw Nissan BMW, H	, General Motors, vagen, Audi, Porsche, , Hyundai, Ford, Fiat, Kia, Mitsubishi
Comparison of key attributes across E	V battery chemistries 🔽 🗎 🏈			
IMC/NCA: higher cost, higher density,	lower discharge cycles			
	LFP	NMC	NCA	
Material composition	Lithium	Lithium	Lithium	
	Iron	Nickel	Nickel	
	Phosphate	Manganese	Cobalt	Tesla, Mercedes-Benz
		Cobalt		B-class E Drive
Average cost US\$ per kWh	\$90/kWh	\$130/kWh	\$130/kWh	
Energy density pack level	160 Wh/kg	200 Wh/kg	200 Wh/kg	High-nickel cathode ba
Discharge recommendation	100%	80-90%	80-90%	chemistries remain dor
Discharge cycles until 80% capacity	2,500	1,000	1,000	though lithium iron pho

These are estimates only, actual figures will vary depending on make and model of electric vehicle.

Table: zecar • Created with Datawrapper

https://zecar.com/resources/what-are-lfp-nmc-nca-batteries-in-electric-cars

High-nickel cathode battery chemistries remain dominant though lithium iron phosphate is making a comeback

Lithium-ion battery chemistries and materials

Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

LCO batteries are in fact the most widely used for smartphones, digital cameras and portable laptops.

Average composition of NMC Lithium-ion Batteries

https://www.reddit.com/r/dataisbeautiful/comments/12lzo81/metal_components_of_a_lithiumion_electric_vehic le/

- LIB recycling can play a critical role in alleviating the current and future supply chain concerns,
- prevent possible pollution and environmental hazards, and
- generate sustainable and continuous economic benefits.

With about four times lower emissions than virgin materials, recycled materials for electric-vehicle batteries reduce the carbon footprint.

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Total CO₂e battery cell production emissions from a nickel-based lithium-ion battery with virgin versus recycled materials,¹ kgCO₂e per kWh

Environmental benefit

Figure E1: Lifecycle GHG emissions of mid-sized 24 kWh battery electric (left) and internal combustion engine (right) vehicles.

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

benefit

Environmental

Note: The vehicle's operational lifetime is assumed to be 150 000 km.

Research for TRAN Committee - Battery-powered electric vehicles: market devel-opment and lifecycle emissions, report, Manuscript completed in February 2018©European Union, 2018, ISBN 978-92-846-2668-7

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Recycling could open new possibilities for battery manufacturers.

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Values represent an average across all battery types. Source: McKinsey Battery Insights, 2022

McKinsey & Company

Figure 3: Relative supply risk indicators and overall supply risk for each element.

Stellenbosch

UNIVERSITEIT

Criterion	Indicator	Weighting	Li	Со	С	Mn	Ni	Fe	Cu	AI
Risk of supply restriction	Static reach reserves	8.9 %								
	Static reach resources	5.2 %								
	End-of-life recycling rate	9.2 %								
Risk of demand increase	By-product dependence	3.9 %								
	Future technology demand	14.1 %								
	Substitutability	14.2 %								
Concentration risk	Country concentration	9.7 %								
	Company concentration	13.0 %								
Political risk	Political stability (Worldwide governance indicator)	11.2 %								
	Policy perception index	5.2 %								
	Regulation risk (Human development index)	5.3 %								
Relative overall supply risk										

Note: Comparisons are made across rows, i.e. for each indicator.

Data source: (Helbig et al., 2017).

Alleviate material supply risks

Supply projections appear sufficient to meet metal demand in the Stated Policies Scenario...

Total demand and supply for lithium, nickel and cobalt, 2020 - 2030

IEA. All rights reserved.

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Notes: NZE = Net Zero Emissions by 2050 Scenario; STEPS = Stated Policies Scenario; APS = Announced Pledges Scenario. The NZE bar represents variability in demand if demand-side measures are taken to reduce battery and critical metal demand. Sources: IEA analysis based on <u>Benchmark Mineral Intelligence</u> for supply capacity.

All elements of EV battery supply chains expand significantly to meet projected demand

Number of mines to produce required levels of metals, anode/cathode production plants, battery gigafactories and EV plants required to meet projected demand in 2030 relative to 2021

IEA. All rights reserved.

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Notes: STEPS = Stated Policies Scenario; APS = Announced Pledges Scenario. Number of additional mines/plants/factories required to meet projected demand from the 2021 demand level is shown by the arrows. Projected demand is annual. Metal demand is total demand including EV and non-EV demand. Assumes the average annual production capacities: lithium mine - 8 kt; nickel mine - 38 kt; cobalt mine - 7 kt; cathode plant - 94 kt; anode plant - 54 kt; battery gigafactory - 35 GWh; and EV production plant - 0.5 million vehicles. Nickel demand does not distinguish between Class 1 and Class 2 nickel. Sources: IEA analysis based on S&P Global ; Bloomberg NEF; Benchmark Mineral Intelligence.

Recycling methods

ACS Energy Lett. 2022, 7, 2, 712-719

Recycling methods

C.M. Costa, J.C. Barbosa, R. Gonçalves, H. Castro, F.J. Del Campo, S. Lanceros-Méndez,

Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities, Energy Storage Materials, Volume 37, 2021,

The ELiMINATE project: Overview

- ERA-MIN project, 3 years
- Collaboration between South Africa, Sweden and Turkey
- Objective:
 - To develop an implementation framework for LIB recyclers to integrate innovative hydrometallurgical recycling processes in Europe and South Africa

Department of Chemical Engineering: Prof Christie Dorfling, Prof Guven Akdogan

The ELiMINATE project: Approach

1. Comparing existing and novel processes:

1.Mineral acid-based

- Existing: Hydrochloric or sulfuric acidbased
- Novel: Sulfuric acid using solvent displacement crystallization (SDC)

2.Organic acid-based

- Existing: Citric acid-based
- Novel process: Methanosulfonic acid (MSA)-based
- B

3. Thermal pre-treatment

 (to potentially complement hydrometallurgical processes) 3. Developing an implementation framework for recyclers, including:

1. Business and economics

2. Making a

selection

3. Reverse supply chain network design for material flow optimization

The ELiMINATE project : Economics and LCA

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

HCI Seq • HCI NMC A HCI SX = H2SO4 Seq • H2SO4 NMC A H2SO4 SX = Citric Seq • Citric NMC A Citric SX

Maritz, 2022

The ELiMINATE project : SA LIB supply volumes

Stellenbosch

UNIVERSITY

UNIVERSITEIT

Engineering · EyobuNjineli · Ingenieurswese

The ELiMINATE project: Reverse logistics

Stellenbosch

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Gonzales-Calienes, G.; Yu, B.; Bensebaa, F. Development of a Reverse Logistics Modeling for End-of-Life Lithium-Ion Batteries and Its Impact on Recycling Viability—A Case Study to Support End-of-Life Electric Vehicle Battery Strategy in Canada. Sustainability **2022**, *14*, 15321. https://doi.org/10.3390/su142215321

The ELiMINATE project: Reverse logistics and recycling facility network for SA

Fig 4: RLN echelon structure for the CA_MP multiple facility scenario for 2023 – 2033

Stellenbosch

UNIVERSITY

IYUNIVESITHI UNIVERSITEIT

The ELiMINATE project: Consolidated framework

- Results will be consolidated in a guiding framework for establishing innovative recycling facilities and reverse logistic networks
- One for Europe and one for South Africa
- Includes:
 - Current and future state of the market (including regulatory environment)
 - For the selected recycling processes:
 - Business model and strategy
 - Lifecycle impacts
 - Optimised material flow network

Stellenbosch

Department of Industrial Engineering: Prof Louis Louw, louisl@sun.ac.za

Department of Chemical Engineering: Prof Christie Dorfling, dorfling@sun.ac.za

Thank you Enkosi Dankie

Photo by Stefan Els