EMERGING OPPORTUNITIES IN SOLAR THERMAL

Stellenbosch university iyunivesithi universiteit

Solar Thermal Energy Research Group

Photovoltaics (PV) is the most common form of solar energy

Stellenbosch UNIVERSITY IYUNIVERSITHI UNIVERSITEIT Solar Thermal Energy Research Group

PV produces direct current electricity directly

Solar thermal energy technologies convert solar irradiation into heat

Solar Thermal Energy Research Group

Non-concentrating solar collectors

Concentrating solar collectors

Solar Thermal Energy Research Group

Solar Thermal Energy Research Group

Over a decade of history in solar thermal energy research

- Staff
 - *Manager:* Prof. Craig McGregor
 - 8 active academic staff
 - 10+ affiliated academics
- Students
 - Cohort of 40 50 MSc and PhD students
 - 2 3 Interns
 - ~ 15 graduates per year

Solar Thermal Energy Research Group

Solar Heating of Industrial Processes (SHIP)

Opportunities in process heat

F Rozon, J Koke, M Owen

SA's energy use is typical of an industrialised nation dependant on coal

Solar Thermal UNIVERSITY IYUNIVERSITHI UNIVERSITEIT

A significant portion (~70%) of energy use is for heat, particularly process heat for industry.

Solar thermal use has historically been limited to domestic hot water, and for electricity generation (CSP).

RSA thermal energy use is 204 TWh_{th} equivalent to 30 million tonnes of coal (15% of annual coal production).

Final energy *consumption* for South Africa in 2015 (total: 3.13 EJ), IEA Note: consumption is different to primary energy as it accounts for efficiencies <u>Solar Payback (2019)</u>

Heat is a large fraction of SA beverage energy demand

Page 7 | Engineering | Solar Thermal Energy Research Group

Stellenbosch UNIVERSITY IVUNIVESITHI UNIVERSITEIT Solar Thermal Energy Research Group

Beverage categories	Production	Energy	Energy	Electricity	Heat
	(mi ℓ)	(kWh/୧)	(GWh/a)	(%)	(%)
Non-alcoholic ready-to-drink	6 980	0.10	675	59%	41%
Sparkling soft drinks	4 400	0.06	270	75%	25%
Juices and juice drinks	670	0.13	80	50%	50%
Packaged water	510	0.05	25	80%	20%
Value added dairy	370	0.27	100	25%	75%
Others	1 030	0.20	200	60%	40%
Alcoholic beverages	5 090	0.46	2 345	31%	69%
Beer	3 440	0.40	1 360	33%	67%
Cider	600	0.25	150	25%	75%
Wine	900	0.13	120	50%	50%
Spirits	150	4.8	715	25%	75%
Total RSA Beverages	12 070	0.25	3 020	38%	62%

Deployment of parabolic trough concentrators for industrial heat is accelerating

Absolicon's solar heat system will be manufactured in RSA soon

Stellenbosch

UNIVERSITY IYUNIVESITHI

UNIVERSITE

Solar Thermal Energy Research

Group

Images: Absolicon Solar Collector AB

The production profile of SA beverage manufactures matches the solar resource

Solar Thermal Energy Research Group

Input assumptions based on SA beverage industry figures

A full technical and economic assessment was developed for solar thermal heating

Modelling in Polysun[™] as indirect solar steam generator with heat exchange

- Thermal load profiles:
 - Filling process for soft drinks
 - Washing and sterilizing glass
- Locations:
 - Cape Town (CPT)
 - Johannesburg (JHB)
- Plants:
 - RGB returnable glass bottles
 - RGB+PET combined glass and plastic
- Profiles:
 - 24h shifts
 - 12h in winter

High solar fractions can be achieved with a marginal increase in costs

Solar Thermal Energy Research Group

Results: technoeconomic modelling

Levelised cost of heat (LCOH) calculated according to VDI6002; economic analysis for low and high Investment costs (CAPEX); variation of collector field and storage to determine the lowest LCOH

Page 11 | Engineering | Solar Thermal Energy Research Group

Solar thermal for medium heat is competitive in SA for all sources except coal

Solar Thermal Energy Research Group

Results: benchmark against fossil fuels

Fuel	Heat cost (US\$/MWh)
Coal (GP)	20 - 60
Coal (WC)	20 - 80
Reticulated gas (GP/KZN)	40 - 50
Solar thermal	50 – 70
Electricity (average Megaflex variable)	+ 08
Heavy fuel oil	50 - 90
Diesel 0.05%	120 - 180

Real WACC @ 6.5%, opex at 2% of capex pa, collector price 277 $/m^2 - 395 /m^2$, economy of scale exponent 0.85, electricity tariff growth 3% real, 20 year lifetime

Solar thermal process heating is already viable for many SA businesses

Conclusions

- Parabolic trough collectors are well suited for integration into existing steam heating networks
- In areas with high levels of irradiation, the low heat costs (\$0.038...\$0.058/kWh in CPT) are attractive, particularly for smaller manufacturers who use oil or electricity for heat
- Thermal supply in South Africa is normally⁺ dominated by cheap coal and solar thermal is not yet competitive
- Systems without storage are cheapest, but the renewable fraction is low (25-30%)
- The economics can still be improved by lowering the steam operating temperature, since the production processes usually take place at temperatures <100°C

+ current coal spot prices during the energy crisis could swing this, but unlikely to justify capital expenditure without additional considerations such as decarbonisation Page 13 | Engineering | Solar Thermal Energy Research Group

Solar Thermal Energy Research Group

Concentrating Solar Power (CSP)

Opportunities in solar thermal electricity

A Attieh, J Pretorius

In concentrating solar power (CSP) thermal energy is converted to electricity

Energy Research Group

Central receiver CSP plant with hybrid PV plant

Parabolic trough is the predominant technology of CSP plants deployed to date

Bokpoort Parabolic Trough CSP Plant, 100 MW

Image credits: ACWA Power

By concentrating solar irradiation, we can generate high temperature heat

Solar Thermal Energy Research Group

Breaking a reflector into segments

parabolic concentrator

parabolic concentrator, segmented

Fresnel concentrator or heliostat field

Solar Towers are emerging as the technology of choice due to high efficiency

Hami Central Receiver CSP plant (China), 50 MW

CSP* is cheapest *dispatchable* option with 12 hour storage * excl. pumped hydro (PHES)

ARENA comparison of dispatchable RE options for Australia

Lovegrove, K., et al. 2018. Comparison of dispatchable renewable electricity options. Australian Renewable Energy Agency.

Stellenbosch

IYUNIVESITHI

UNIVERSITEIT

Solar Thermal Energy Research

Group

Modular CST offers several deployment advantages in South Africa

Solar Thermal Energy Research Group

Advantages of modular concentrating solar thermal

Monolithic CSP : 50-100 MW Economy of scale benefit High capital (\$800 mil) – hard to finance

Modular CSP : 5-10 MW Better optics – high solar to thermal efficiency Lower capital cost (\$80 mil) – simpler finance Repeatable – justifies investment in local manufacturing Expandable – grow to form energy parks

A full technical and economic assessment was developed for a 10 MW CSP/PV hybrid

Solar Thermal Energy Research Group

Account for economy of scale effects; time effects (resource, optimised dispatch and ToU tariffs), and optimise the CSP plant configuration

Medium scale CSP/PV hybrids are competitive in good solar resource locations

Results: 10MW CSP/PV

PV: R0.70/kWh CSP: R1.75/kWh Blende Megaf

NPV @ over 2

Capital costs

Megaflex, FY 10MW user. Transmission Zone >900km

Megaflex tariffs increasing at at CPI + 3.5% for NPV and IRR

Tariffs calculated based on 15% Equity IRR Hurdle Rate

ed: R1.30/kWh	SM	FLSH (hrs)	Tariff @ 15% Equity IRR Hurdle Rate (ZAR/kWh)	
TEX RZ-RZ.ZS/KVVTT		9	1.8200	
		10	1.7850	
0.13% = 8500 mi (nominal)		11	1.7600	
$\Omega_{\rm V}$ PPA	1.6	12	1.7450	
OYTTA .		14	1.7350	
		16	1.7650	
and exchange rates reflect 2021		9	1.8900	
(21/22, given at average of Peak and Std ToU for		10	1.8400	
Most expensive rate for \geq 500V & <66kV.				

16

1.7450

46 769 964

Solar Thermal **Energy Research** Group

			Unit				Value	
V G	enerati	on	kWh					28 110 770
V Ta	ariff		ZAR/kWh					0.686
ost	ost of PV Energy Delivered		ZAR		19 283 988			
SM	FLSH (hrs)	Tariff @ 15% Equity IRR Hurdle Rate (ZAR/kWh)	CSP Energy Delivered (kWh)	Total Ene Delivered (I	ergy kWh)	%PV	%CSP	Blended Tariff (ZAR/kWh)
	9	1.8200	33 490 705	61 601 4	75	46%	54%	1.3025
	10	1.7850	35 448 970	63 559 74	40	44%	56%	1.2989
	11	1.7600	37 039 041	65 149 8	11	43%	57%	1.2966
6	12	1.7450	38 404 189	66 514 9	59	42%	58%	1.2974
	14	1.7350	40 194 856	68 305 62	26	41%	59%	1.3033
	16	1.7650	40 339 358	68 450 12	28	41%	59%	1.3219
	9	1.8900	36 278 247	64 389 03	17	44%	56%	1.3644
	10	1.8400	38 923 087	67 033 8	57	42%	58%	1.3561
	11	1.7900	41 335 531	69 446 30	01	40%	60%	1.3431
	12	1.7550	43 531 103	71 641 8	73	39%	61%	1.3355
	14	1.7200	46 476 422	74 587 19	92	38%	62%	1.3303

74 880 734

38%

62%

1.3474

CSP/PV hybrids are at grid parity in SA and offer the lowest cost dispatchable power

Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Solar Thermal Energy Research Group

Strengths

- 1. The CSP/PV plant blended tariffs are competitive due to PV's low cost and low-risk profile.
- 2. The hybrid plant is fully dispatchable and can perform load-following and arbitrage for energy security and cost savings.
- 3. The PV capacity de-risks a portion of the capital expenditure and operating costs, making the hybrid's CSP portion more appealing to lenders and investors.
- 4. A medium-scale plant simplifies the development and construction of CSP and permits a modular approach where additional capacity units can be added as required.
- 5. A reduced CSP component also permits shorter construction, making it more competitive with respect to other technologies.

Weaknesses

- 1. The perception of elevated technology risk and the aspect of affordability continue to exist in the market.
- 2. Due to the impact of technology risk and off-taker risk on project funding and bankability, the pool of potential off-takers is small.
- 3. Due to the large capital and funding costs, the PPA contract duration must be at least 20 years. This is in a market where private off-takers are hesitant to sign PPAs longer than 10 to 12 years.
- 4. The operation and maintenance of CSP facilities is extremely complex.

Significant potential for CSP exists in South Africa in a least cost electricity grid

100% 100% 100% 80% P_{BES} GW 60% 80% 80% P_w GW 40% *s_{BES}* h P_{PV} GW 60% 20% 60% 0% -20% 40% 40% -40% 20% -60% 20% -80% -100% 0% 0% 4/16 4/17 4/18 4/19 4/20 4/21 4/22 1/01 1/25 2/18 3/13 4/06 4/30 5/24 4/16 4/17 4/18 4/19 4/20 4/21 4/22 Wind BES BES SoC PV 45 40 100% 35 80% 30 25 60% 20 P_{OCGT} GW 40% 15 10 20% P_{CSP} GW 5 s_{CSP} h 0% 4/16 4/17 4/18 4/19 4/20 4/21 4/22 4/22 4/17 4/18 4/19 4/20 4/21 SM 4/16 CSP ······ CSP SoC Wind IIIIIIcurt BES CCGT -----LOAD

Science and Innovation REPUBLIC OF SOUTH AFRICA

Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Solar Thermal **Energy Research** Group

Photo by STERC

Thank you Enkosi | Dankie

ACKNOWLEDGEMENTS:

Francois Rozon, Prof Johannes Koke, Annitta Attieh, Dr Hannes Pretorius, Dr Mike Owen

CONTACT DETAILS;

Prof Craig McGregor Solar Thermal Energy Research Group Stellenbosch University, South Africa STERG@sun.ac.za

Solar Thermal Energy Research Group

Backup slides

Rooftop industrial process heat in Turkley, Image: Solar Thermal World

Southern Africa is blessed with solar resources

GeoModel WORLD MAP OF DIRECT NORMAL IRRADIATION SOLAR solargis http://solargis.info SolarGIS © 2013 GeoModel Solar < 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 > Annual sum Long-term kWh/m² average of: Daily sum < 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 >

Stellenbosch

UNIVERSITY IYUNIVESITHI

UNIVERSITEIT

Solar Thermal Energy Research

Group

RE/BES are cheapest dispatchable options with 1 hour storage

Solar Thermal Energy Research Group

ARENA comparison of dispatchable RE options for Australia

Lovegrove, K., et al. 2018. Comparison of dispatchable renewable electricity options. Australian Renewable Energy Agency.

CSP* is cheapest dispatchable option with 12 hour storage * excl. PHES

ARENA comparison of dispatchable RE options for Australia

Lovegrove, K., et al. 2018. Comparison of dispatchable renewable electricity options. Australian Renewable Energy Agency.

Stellenbosch

IYUNIVESITHI

UNIVERSITEIT

Solar Thermal Energy Research

Group

Solar thermal system costs will continue to drop as systems are deployed

Cost reduction projections range from -1% to 3% per annum

Assumptions

		Low CAPEX	High CAPEX	
Gross Collector area	m²	6.04		
Specific collector price (for reference size)	\$/m²	277	395	
Reference solar field size corresponding to cost	m²	2000		
Economy of scale exponent		0.85		
Storage	\$/m³	1700	2000	
Average system life	years	20		
WACC		6.5%		
OPEX	% of Capex	2.0%		
Inflation		0%		
Electricity tariff increases above inflation		3%		

Results for 10MW CSP/PV against Megaflex

STERG

Stellenbosch UNIVERSITY IYUNIVERSITHI UNIVERSITEIT

Solar Thermal Energy Research Group

Thank you Enkosi | Dankie

ACKNOWLEDGEMENTS: Add text

CONTACT DETAILS:

Author

Solar Thermal Energy Research Group Stellenbosch University South Africa STERG@sun.ac.za sterg.sun.ac.za

STERG

Rooftop industrial process heat in Turkley, Image: Solar Thermal World

Solar Thermal Energy Research Group is the largest in Southern Africa in the field

Solar Thermal Energy Research Group

Staff

- Director: Prof. Craig McGregor
- Admin officer: Leigh van der Merwe
- 8 active academic staff: Prof J van der Spuy, Prof J Hoffmann, Dr H Pretorius, Dr W Smit, Dr M Owen, Prof C McGregor, Prof C Meyer
- 10+ affiliated academics

Students

- 40 50 MSc and PhD
- 2 3 Interns

An introduction to the lecturer

Solar Thermal Energy Research Group

Image credit: Balz, Göcke, Keck, von Reeken, Weinrebe & Wöhrbach (2016). Stellio – development, construction and testing of a smart heliostat. 1734. 020002. 10.1063/1.4949026.

ROADMAP TO ACHIEVING OUR 2030 TARGET

Sasolburg

Sasol R&D faci

Image credit: SASOL Climate Change Report (2020)

- PhD is Process Engineering
- 10 years in chemical and energy research in industry
- 5 years in CSP research, includes Stellio heliostat
- 5 years on Sasol's carbon reduction roadmap
- Director of STERG at SU since 2019

The Solar Thermal Energy Research Group has over a decade of history in CST

Solar Thermal Energy Research Group

DSI-Solar Thermal Spoke studies areas of national interest

Solar Thermal Energy Research Group

Solar Thermal Energy Research Group

Solar Thermal Energy Research Group

STERG: infrastructure & resources

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Photo by ST

Solar Thermal **Energy Research** Group

Thank you Enkosi | Dankie

ACKNOWLEDGEMENTS: Add text

CONTACT DETAILS: Author Solar Thermal Energy Research Group Stellenbosch University South Africa STERG@sun.ac.za

Page 42 | Engineering | Solar Thermal Energy Research Group