Predicting Particle Flow in Bulk Handling Applications

Granular Materials

- Granular material is defined as
 - Collection of macroscopic individual (discrete) particles
 - Particles interact through physical contact associated with energy dissipation
- Granular materials are everywhere in nature, and are second to water, the most used resource on earth [1]
- The handling and processing consumes 10% of the energy that we produce on earth [2]
- It is estimated that we waste 40% of the capacity of many of our industrial plants due to problems related to the handling of granular materials, and a poor understanding of their behaviour [3].

forward together sonke siya phambili saam vorentoe

A Typical Working Day

Can we model granular materials?

Continuum-based Models

Material Point Method (MPM)

Open pit mine wall failure

• Mohr-Coulomb material

- Young's modulus 1e7 N/m²
- Poisson's ratio 0.3
- Friction 30°
- Dilation 5°
- Density 2600 kg/m³

forward together sonke siya phambili

saam vorentoe

Discrete-based Models

forward together sonke siya phambili saam vorentoe

Screening

Discrete-based Models

Discrete Element Method (DEM)

- DEM models discrete particles
- Contact models based on overlap-force relation

Discrete particles

Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

forward together sonke siya phambili saam vorentoe

Time cycling

Calibration of parameter values

- Perform laboratory experiment
- Repeat experiment in DEM
- Adjust the contact parameter values to match the bulk response
- Combination of experiments needed for the multi-parameter set
- Experiments: small, sensitive to material properties
- Developed experiments and methodologies over 20 years

Calibration of parameter values

Particle size and shape

Calibration of parameter values

Shear testing

Acrylic cell diameters 110 x 240 mm

Ring (Rotational) Shear Testing of Corn

Direct (Translational) Shear Testing of Coal

Calibration of parameter values

Angle of repose and mass flow rate

Calibration of parameter values

Static angle of repose

Stellenbosch

Calibration of parameter values

Dynamic angle of repose

Calibration of parameter values

Centrifuge testing

Stellenbosch UNIVERSITY IVUNIVESITHI UNIVERSITEIT

forward together sonke siya phambili saam vorentoe

Applications

Applications Silo/bin/hopper discharge

forward together

sonke siya phambili saam vorentoe

Applications Rotary valve

Applications Mixing and blending

Applications Tumbling mill

Applications Soil-tool interaction

forward together sonke siya phambili saam vorentoe

Dragline bucket filling

Soil tillage

Applications Conveyor transfer modelling

forward together sonke siya phambili saam vorentoe

Laboratory recirculating conveyor

DEM modelling

Cohesive material

Applications Conveyor transfer scale testing

Applications Fertiliser spreading

Title: Stellenbosch University - Fertilizer Spreader 7b: Time = 5.00106106073e-003 s

Title: Stellenbosch University - Fertilizer Spreader - Reflector 2b: Time = 5.00106106073e-003 s

Applications Rock fall protection

Applications Postharvest handling of fruit (soft particles)

forward together sonke siya phambili saam vorentoe

Destemming of grape berries

Apple packaging

Apple water conveyor

forward together sonke siya phambili saam vorentoe

[1] Richard, P., Nicodemi, M., Delannay, R., Ribiere, P., Bideau, D., 2005, Slow relaxation and compaction of granular systems, Nat. Matter, 4(2), 121

[2] Duran, J., 2000, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials. Partially Ordered Systems. Springer, New York

[3] Ennis, B.J., Green, J., Davies, R., 1994, Particle technology: The legacy of neglect in the U.S., Chemical Engineering Progress, 90, 32–43