

Smart Energy: Applying Machine Learning to Renewable Energy Challenges By: Dr Armand du Plessis ~ Electrical & Electronic Engineering

- Faculty of Engineering
- Industry Showcase 2025

Applying Machine Learning to Renewable Energy Challenges

Stellenbosch

forward together sonke siya phambili saam vorentoe

Goal of this presentation = application

To show how researchers at Stellenbosch University have applied machine learning in the context of renewable energy?

...hopefully spark some ideas

Applying Machine Learning to Renewable Energy Challenges

Stellenbosch

forward together sonke siya phambili saam vorentoe

Renewable Energy (solar, wind) = intermittent and stochastic power source

- More renewables = More uncertainty & stress onto the electrical grid
- Biases power utilities against dominant grid connection of renewables

Applying Machine Learning to Renewable Energy Challenges

Solution: Reduce uncertainty with Forecasting

Aids both grid operators and power producers

Transmission Operator

- Aids with balancing supply & demand
- Maintaining grid stability (power quality)
- Lowers standby costs of operating reserves

Power Producers

- Aids with accurate unit commitment (avoid penalties)
- Optimised energy trading (enhanced bidding strategies)
- Performance monitoring

Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Commercial Solar PV forecasting

forward together sonke siya phamb saam vorentoe

- First group in South Africa to deliver a state-of-theart forecast model
- 75MW PV system
 - 84x 880 kVA inverters
 - 13000+ strings
- Successfully delivered
 1h 6h ahead forecasts

Commercial Solar PV forecasting

Stellenbosch

forward together sonke siya phambili saam vorentoe

Discovery: Proof of non-uniform low-level power output dynamics **Big question**: Macro-level vs Inverter-level forecasting

- Is one ML model enough to capture PV system dynamics?
- Or should we divide PV system into sections and forecast each section's behaviour?

Project: Solar PV Forecasting

Stellenbosch

forward together sonke siya phambili saam vorentoe

Answer: With machine learning – we can divide large PV systems into smaller sections (correlation) & create a forecast model for each section.

Results:

 Solution proven to reduce computational expense without sacrificing accuracy

Industry need to know:

 Machine Learning is powerful enough to capture all PV system dynamics.

"One model to rule them all"

Hydro-Power forecasting

forward together sonke siya phambili saam vorentoe

Total available Hydro Power capacity available to SA: 3.5MW

Forecasting can assist operators with estimating dam levels for generator scheduling decision making.

Hydro-Power forecasting

Project: Eswatini Electricity Company (EEC)

- Hydroelectric scheme: 20 MW + 40 MW cascaded scheme
- EEC exploits arbitrage opportunities for electricity sales, during high TOU (time-of-use tariffs)
- These conditions require an optimum dispatch
 strategy
- 4-day ahead forecasts = great value

forward together sonke siya phambili saam vorentoe

Hydro-Power forecasting

Data & Results

• Forecast model delivered for 4-day ahead forecasts.

• Deep learning networks outperformed linear regression by a factor of 3.

• **Outcome**: Ultimately, power plant managers can further optimise their dispatch strategy.

forward together sonke siya phambili saam vorentoe

Comparison of forecast and actual GS 15 flow for 4 days ahead

forward together sonke siya phambili saam vorentoe

Question: We can forecast the wind, but how can we further eliminate the forecast model uncertainty?

Answer: Local-Area Weather Forecasts; Battery Storage

Data:

• Stellenbosch daily wind speed data set

Stellenbosch

UNIVERSITY IYUNIVESITHI

Challenge: Wind speed forecasting

- Average user or company cannot create or operate a custom weather forecasting model
- Reason: don't posses the necessary computational power
- Forced to subscribe to weather forecasting companies

Solution:

- To develop a local-area weather forecast model
- Computationally less expensive alternative to current weather forecasting models.

forward together sonke siya phambili saam vorentoe

forward together sonke siya phambili saam vorentoe

Al-based Weather Prediction (AIWP)

- Identified AIWP as a computationally efficient alternative to NWP models
- Proved that AIWP can contend with NWP
- Current results: 18% less accurate
 than NWP
- **Amazing result**: Near future, we will generate forecasts at a fraction of the computational requirements of NWP models.

SA-GNN

- 24 - 21 21 - 18 - 15 - 12 - 9 - 6 - 3 - 3 - 0

21 (s/ 18 (

15

12 9

6 3 Wind Speed

IFS HRES

Vind Speed (m/s)

Challenge:

- Unit commitments are required in day-ahead energy markets.
- If forecasts under-predict, there is a loss of sales.
- If forecasts over-predict, there is a penalty/fine imposed.

Solution:

- Use energy storage (battery) as power supplement for over-predicted power forecast errors.
- But how big should this battery be?

Over-prediction

(i.e. less power produced than predicted)

Question: How can energy storage be used to assist with forecast deviations?

- Energy shortage is supplemented from batteries
- Avoids energy market penalties

Under-prediction

(i.e. surplus power available)

- Surplus wind power is stored into batteries
- Avoids self-imposed curtailment

Wind-Power forecasting

Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

forward together sonke siya phambili saam vorentoe

Case Study Results (1h – 24h forecast)

 Eliminate 70 % of forecast errors with battery = 3-7 % of rated capacity x h

 Eliminate 80 % of forecast errors with battery = 5-12 % of rated capacity x h

Elimination of 80% < Errors
 Battery size becomes increasingly
 impractical

Typical wind forecast error?

Performance monitoring

forward together sonke siya phambili saam vorentoe

Real-time performance monitoring

Challenge

- Large SA company installed a 3MW PV system
- Experienced issues with system monitoring

Objective:

 Develop a highly sensitive monitoring tool with machine learning

forward together sonke siya phambil saam vorentoe

forward together sonke siya phambili saam vorentoe

Result

• Real-time system performance executed with little to no dependence on human observation

System deviation identified

Objective:

• How can we utilise battery banks as an asset for owners?

Solution

- Use of Reinforcement-Learning to "gamify" real-time battery deployment strategies.
 - Peak shaving
 - Time-of-use arbitrage, (Load shifting)
 - Ancillary services (power quality)
 - Energy storage (loadshedding)

forward together sonke siya phambili saam vorentoe

Renewables, Batteries, Electric Vehicles & Machine Learning

UNIVERSITEIT

Renewables, Batteries, Electric vehicles & Machine Learning

Perspective:

- Common belief that an effective deployment of Renewable Energy is a catalyst for the mass adoption of EV's
- But....the opposite is also true:
 More EV's = more Renewable Energy
- Machine Learning serves as a second catalyst for mass adoption (of both EVs & Renewable Energy)

Stellenbosch

Renewables, Batteries, Electric vehicles & Machine Learning

Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

forward together sonke siya phambili saam vorentoe

Application:

 Machine learning has proven to be an effective tool to assess EVs efficiency.

Provided the data of any existing EV, we can emulate any route, anywhere.

 With kWh/km identified, financial feasibility can be determined

forward together sonke siya phambili saam vorentoe

Some advice to industry engineers

Machine Learning models

 Don't be a hero – you can achieve a lot with Linear Regression, Feed-Forward-Neural-Networks, XGBoost (LSTM, GRUs, Transformers – extreme)

Forecasting:

- Multi-step forecasting vs. Single-step forecasts
- Multi-step saves time, dev. cost & is accurate enough

Key take-aways

forward together sonke siya phambili saam vorentoe

Some advice to industry engineers

What's Next?

- Energy markets and bidding strategies
 - Forecasting, trading, arbitrage
 - Machine Learning can solve it all

Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

1 1 1

Engineering EyobuNjineli Ingenieurswese

Thank you Enkosi Dankie