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Applying Machine Learning to Renewable Energy Challenges

Goal of this presentation = application

To show how researchers at Stellenbosch University have 

applied machine learning in the context of renewable energy?

…hopefully spark some ideas
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Applying Machine Learning to Renewable Energy Challenges

Renewable Energy (solar, wind) = intermittent and stochastic power source

▪ More renewables = More uncertainty & stress onto the electrical grid

▪ Biases power utilities against dominant grid connection of renewables
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Applying Machine Learning to Renewable Energy Challenges

Transmission Operator

Solution: Reduce uncertainty with Forecasting

▪ Aids both grid operators and power producers

• Aids with balancing supply & 

demand

• Maintaining grid stability (power 

quality)

• Lowers standby costs of operating 

reserves

Power Producers

• Aids with accurate unit 

commitment (avoid penalties)

• Optimised energy trading 

(enhanced bidding strategies)

• Performance monitoring
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Commercial Solar PV forecasting

▪ First group in South Africa 

to deliver a state-of-the-

art forecast model 

▪ 75MW PV system

▪ 84x 880 kVA inverters

▪ 13000+ strings

▪ Successfully delivered 

1h – 6h ahead forecasts
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Commercial Solar PV forecasting

Discovery: Proof of non-uniform low-level power output dynamics

Big question: Macro-level vs Inverter-level forecasting

• Is one ML model enough to capture PV system dynamics?

• Or should we divide PV system into sections and forecast each section’s behaviour? 
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Project: Solar PV Forecasting

Answer: With machine learning – we can divide large PV systems into smaller sections 
(correlation) & create a forecast model for each section.

=

Results:

• Solution proven to reduce 

computational expense 

without sacrificing accuracy

Industry need to know: 

• Machine Learning is 

powerful enough to capture 

all PV system dynamics. 

“One model to rule them all”
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Hydro-Power forecasting

Total available Hydro Power capacity available to SA: 3.5MW

Forecasting can assist operators with estimating dam levels for generator 
scheduling decision making.
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Hydro-Power forecasting

Project:  Eswatini Electricity Company (EEC) 

• Hydroelectric scheme: 20 MW + 40 MW cascaded 

scheme 

• EEC exploits arbitrage opportunities for electricity 

sales, during high TOU (time-of-use tariffs)

• These conditions require an optimum dispatch 

strategy

• 4-day ahead forecasts = great value
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Hydro-Power forecasting

Data & Results

• Forecast model delivered for 4-day 

ahead forecasts.

• Deep learning networks outperformed 

linear regression by a factor of 3.

• Outcome: Ultimately, power plant 

managers can further optimise their 

dispatch strategy.
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Wind-Power forecasting

Question: We can forecast the wind, but how can we further eliminate the 
forecast model uncertainty? 

Answer: Local-Area Weather Forecasts; Battery Storage 
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Wind-Power forecasting

Data: 

• Stellenbosch daily wind speed data set

April August
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Wind-Power forecasting

Challenge: Wind speed forecasting

• Average user or company cannot create or operate a 

custom weather forecasting model 

• Reason: don’t posses the necessary computational power 

• Forced to subscribe to weather forecasting companies

Solution: 

• To develop a local-area weather forecast model

• Computationally less expensive alternative to current 

weather forecasting models.
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Wind-Power forecasting

AI-based Weather Prediction (AIWP)

 
• Identified AIWP as a computationally 

efficient alternative to NWP models

• Proved that AIWP can contend with 

NWP

• Current results: 18% less accurate 

than NWP

• Amazing result: Near future, we will 

generate forecasts at a fraction of the 

computational requirements of NWP 

models.
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Wind-Power forecasting

Challenge: 

• Unit commitments are required in day-ahead energy markets.

• If forecasts under-predict, there is a loss of sales.

• If forecasts over-predict, there is a penalty/fine imposed.

Solution: 

• Use energy storage (battery) as power supplement for over-

predicted power forecast errors.

• But how big should this battery be?
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Wind-Power forecasting

Question: How can energy storage be used to assist with forecast deviations? 

 

Over-prediction 

(i.e. less power produced than predicted)

Under-prediction 

(i.e. surplus power available)

• Surplus wind power is stored into 
batteries

• Avoids self-imposed curtailment

• Energy shortage is supplemented 
from batteries

• Avoids energy market penalties
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Wind-Power forecasting

Case Study Results (1h – 24h forecast)

• Eliminate 70 % of forecast errors with 

battery = 3-7 % of rated capacity x h

• Eliminate 80 % of forecast errors with 

battery = 5-12 % of rated capacity x h

• Elimination of 80% < Errors

Battery size becomes increasingly 

impractical

Typical wind forecast error?
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Performance monitoring
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Real-time performance monitoring

Challenge 

▪ Large SA company installed a 

3MW PV system

▪ Experienced issues with system 

monitoring 

Objective: 

▪ Develop a highly sensitive 

monitoring tool with machine 

learning
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Real-time performance monitoring

Result

• Real-time system performance executed with little to no dependence on human observation

 

System deviation identified
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Battery energy management

Objective: 

▪ How can we utilise battery banks as an asset for owners?

Solution

• Use of Reinforcement-Learning to “gamify” real-time 
battery deployment strategies. 

▪ Peak shaving 

▪ Time-of-use arbitrage, (Load shifting)

▪ Ancillary services (power quality)

▪ Energy storage (loadshedding)
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Renewables, Batteries, Electric Vehicles & Machine Learning
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Renewables, Batteries, Electric vehicles & Machine Learning

Perspective: 

▪ Common belief that an effective deployment of 

Renewable Energy is a catalyst for the mass 

adoption of EV’s 

▪ But….the opposite is also true: 

More EV’s = more Renewable Energy

▪ Machine Learning serves as a second catalyst for 

mass adoption (of both EVs & Renewable Energy)
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Renewables, Batteries, Electric vehicles & Machine Learning

Application: 

▪ Machine learning has proven to be an 

effective tool to assess EVs efficiency.

▪ Provided the data of any existing EV, we 

can emulate any route, anywhere.

▪ With kWh/km identified, financial 

feasibility can be determined
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Key take-aways

Some advice to industry engineers

Machine Learning models

▪ Don’t be a hero – you can achieve a lot with Linear Regression, Feed-Forward-Neural-

Networks, XGBoost (LSTM, GRUs, Transformers – extreme)

Forecasting: 

▪ Multi-step forecasting vs. Single-step 

forecasts 

▪ Multi-step saves time, dev. cost & is 

accurate enough
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Key take-aways

Some advice to industry engineers

What’s Next?

▪ Energy markets and bidding strategies

▪ Forecasting, trading, arbitrage

▪ Machine Learning can solve it all



Thank you
Enkosi
Dankie
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