

Prof Annie Chimphango (Chemical Engineering Dept)

Faculty of Engineering

Industry Showcase 2025

Contact: achimpha@sun.ac.za

Integrated Biorefineries for Advancing a Circular Bioeconomy

Outline

Designing Integrated Biorefineries for a Circular Bioeconomy

Introduction: Research Group and Research Areas

Bio-Resource Engineering Group

Biomass processing:

Multi-feedstock/Multiproduct Biorefineries
Green processing technologies

Bioproducts & Biomaterials

Biopolymers; biofilms, biochemicals and biofuels Smart packaging and coatings Hydrogels, aerogels, and cryogels Functional micro-/nano-biocomposites

Bioprocess engineering:

Enzyme production and application
Biomaterials modification and application

Sustainable systems:

Systems approach; Integrated & circular systems, Techno-economic & sustainability analysis

Introduction: Research Focus

Research Focus

Convert or transform agricultural and forestry residues into high-value products

Develop sustainable systems and processing technologies to advance material circularity

Scale-up and optimize the conversion processes

Innovative applications

Introduction: Integrated Biorefineries for Advancing a Circular Bioeconomy

Research Governing Principles

RESOURCES EFFICIENCY

MINIMIZE WASTE/
PROMOTION MATERIAL
CIRCULARITY

GREEN PRODUCTS &
PROCESSES
RENEWABLE RESOURCES

POLLUTION PREVENTION

A Circular Bioeconomy

What is a Circular Bioeconomy

forward together sonke siya phambili

Different Perspectives

A Circular Bioeconomy

A Framework developed by the Ellen MacArthur Foundation to guide the transition towards circularity

Bagasse

Woodchips

Paper Sludge

Mango Seed

Grape Waste

Maize Stover

Wheat Straw

Wheat Bran

Mango Peels

Potato^bPeels

Other High-Value Compounds:

- Antioxidants
- Extractives
- Pectin
- Polyphenols
- Proteins
- Starch

(Brian H. Davison et al. 2014)

Engineering | EyobuNjineli | Ingenieurswese

- Green Chemicals and Products from Renewable Resources to Substitute Petroleum-Based Chemicals and Products.
- Guided by the Market Value

forward together sonke siya phambili saam vorentoe

Engineering | EyobuNjineli | Ingenieurswese

1. Bioprocessing

2. Biotechnology

3. Green solvent

4. Chemical Free

Mango Waste

Mango peel (7-24%)

- Mango seed (30-60%)
 - Made of a husk and a kernel

Waste Valorization

Mango Waste Chemical Composition

7-24% of the mango fruit

Mango peels

Anthocyanins- Natural colourant & antioxidant- 565 mg/ 100g
Mkt Value > U\$ 387.4 Million in 2021

Pectin-Stabilizer, thickner, gelling agent, dietary fibre U\$ 958 million in 2015 and 7.3% increase in 2018-2023.

Polyphenols- Antimicrobial, antioxidants etc. Polyphenols Market Projection U\$1.33 Billion By 2024

Designing Integrated Biorefineries for a Circular Bioeconomy: Techno-economic and sustainability Studies

Mango waste biorefinery technoeconomic and sustainability analysis

Scenario 1 Heat and power

Scenario 2
Pectin, heat, and power

Scenario 3
Polyphenols, pectin, heat, and power

Scenario 4
Pectin, bioethanol, heat, and power

Scenario 5
Polyphenols, pectin,
bioethanol, heat, and power

Scenario 6
Bioethanol, heat, and power

forward together sonke siya phambili saam vorentoe

Annual Wheat Production/yr in SA ~
 2 Million Tonnes

• 1.0 kg wheat grain = 1.5 kg wheat straw

• 1.0 kg wheat grain ~ 0.2 kg wheat bran.

Design guided by the Volume (Availability)

Biomass Valorization Pathways: The case of Wheat straw and Wheat Bran

Integrated Biorefineries for a Circular Bioeconomy- Example: Agriculture and Forestry

Multi-Feedstock Co-Production of High-Value Materials and Bioenergy

Mitigation of Climate Change

Designing Integrated Biorefineries for a Circular Bioeconomy-Fibre recovered from Pulp and Paper Mill Waste Streams

- Gel-like nanocellulose suspensions obtained after 5 min
- Thin transparent films

Biorefineries Integrated into Cassava Starch Processing Maximizing Resource Recoveries and Material Circularity

Designing Integrated Grape and Wine Industry Stellenbosch Biorefineries for a Circular UNIVERSITY **IYUNIVESITHI** Bioeconomy- Example UNIVERSITEIT Bioproducts and **Biomaterials** Oils/waxes Polyphenols Nanoparticles Hydrogel Pectin Grape and wine Aerogel Integrated waste streams Cellulose **Emulsions** Biorefinery Stems Granules Hemicellulose Pomace Lees Lignin Other Biopolymers Industries

Wheat ban arabinoxylan 0.8% added to flour dough: Displaces 2.5% flour for the same bread volume.

Baking industry

Novel Applications

Hemicelluloses as Flour Replacer takes advantage of the hemicellulose water-holding capabilities

Designing Integrated Biorefineries for a Circular Bioeconomy-Functional/ Smart/Intelligent Packaging

* Extract – RC extract + NP extract (1:1)

Use as Biosensors

+ 3% (v/v) extract

Polyphenols + pectin+ Hemicelluloses + Nanocellulose

Active food packaging- taking advantage of natural antioxidants and antimicrobial properties

Stellenbosch

UNIVERSITY
IYUNIVESITHI
UNIVERSITEIT

forward together
sonke siya phambili
saam vorentoe

Biomedical Applications- e.g., Wound Dressing

Cellulose-based biocomposite for potential application as barrier films

Designing Integrated Biorefineries for a Circular Bioeconomy Cryogels: Wastewater Treatment

Reduce build-up of fats, oil and grease in pipes^a

Removal of oil spills

Designing Integrated Biorefineries for a Circular Bioeconomy: Key Considerations

Resource use efficiency and Economic viability

Minimize waste, generation and environmental impacts

Responsive to socioeconomic needs e.g. catalyst for job creation

Feedstock, Technology & Products Compatibility Optimized for minimum inputs, product yields & quality

Apply Green
Engineering and Green
Chemistry principles

Diversification of feedstock and products (process configurations)

