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Tech Hype Cycles

I need 
a 
snappy 
title

“Mineral 
processing 
done 
better”

The 
speaker 
starts 
his talk If all 

goes 
well…

“Actually, it 
made 
sense”
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Big Data/Industry 4.0

• Big Data provides the opportunity to enhance industrial performance
• Operationally, economically, SHE

• Machine learning provides mathematical/statistical models that turn data into actionable 
information

Source: Reis and Gins, Processing 2017, 5, 35



Mineral processing challenges and 
opportunities
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Continuous, connected, controlled, circulating, complex, changing



Mineral processing data
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• Online data
• Physical property sensors (~seconds)

• E.g. mass flow rate, density, temperature, pressure

• Image data (~minutes)

• E.g. rocks on conveyor belts, flotation froth

• Offline data
• Laboratory data (~hours)

• E.g. metal content, particle size distribution

• Image data (~days)

• E.g. microscopic grain shape and colour

• Text data (~days)

• E.g. maintenance logs, metallurgist reports



Machine learning definitions
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𝒀𝒀 = 𝑓𝑓(𝑿𝑿,𝜽𝜽)

𝒀𝒀 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑌𝑌 ~ 𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑣𝑣𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣;𝑌𝑌~ 𝑐𝑐𝑣𝑣𝑜𝑜𝑣𝑣𝑐𝑐𝑜𝑜𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑣𝑣
𝑿𝑿 = 𝑣𝑣𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋 ~ 𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑣𝑣𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣 𝑋𝑋 ~ 𝑐𝑐𝑣𝑣𝑜𝑜𝑣𝑣𝑐𝑐𝑜𝑜𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑣𝑣
𝜽𝜽 = 𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 𝜃𝜃𝑚𝑚 = 𝑝𝑝𝑜𝑜𝑚𝑚𝑣𝑣𝑣𝑣 𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣;

𝜃𝜃ℎ = ℎ𝑦𝑦𝑜𝑜𝑣𝑣𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣
𝑓𝑓 = 𝑓𝑓𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑣𝑣𝑜𝑜𝑐𝑐𝑣𝑣𝑣𝑣 𝑓𝑓𝑜𝑜𝑣𝑣𝑝𝑝 𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣𝑐𝑐, 𝑣𝑣.𝑐𝑐. 𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑜𝑜𝑐𝑐

𝑁𝑁𝑜𝑜𝑐𝑐 − 𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣𝑐𝑐, 𝑣𝑣.𝑐𝑐.𝑐𝑐𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑣𝑣𝑜𝑜𝑣𝑣

Training: Learn 𝜃𝜃𝑚𝑚 (e.g. minimize ∑𝑖𝑖 𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖
2
)

Validation: Learn 𝜃𝜃ℎ



Machine learning definitions
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𝒀𝒀 = 𝑓𝑓(𝑿𝑿,𝜽𝜽)
Supervised learning Unsupervised learning

Regression
𝑌𝑌~𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑣𝑣𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣

Classification
𝑌𝑌~𝑐𝑐𝑣𝑣𝑜𝑜𝑣𝑣𝑐𝑐𝑜𝑜𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑣𝑣

Noise removal, 
feature extraction

�𝑿𝑿 = 𝑓𝑓 𝑿𝑿,𝜽𝜽
𝑻𝑻 = 𝑓𝑓(𝑿𝑿,𝜽𝜽)

Clustering
𝐶𝐶 = 𝑓𝑓 𝑿𝑿,𝜽𝜽



Machine learning definitions

Page 9



Hype
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BIG DATA! INDUSTRY 4.0! ARTIFICIAL INTELLIGENCE! (?)

𝒀𝒀 = 𝑓𝑓(𝑿𝑿,𝜽𝜽) More data + Better computers + Better methods



Hype
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• Increasing popularity in many applied sciences

• Special issues in journals of medicine, finance, environmental science, etc.

• Review undertaken: 13 journals and conference proceedings (2004 – 2018):
• AIChE; Chemometrics and Intelligent Laboratory Systems; Computers and Chemical Engineering; Control 

Engineering Practice; Engineering Applications of Artificial Intelligence; Journal of Process Control; IFAC 
MMM; Industrial and Chemical Engineering Research; International Journal of Mineral Processing; 
International Journal of Mining, Reclamation and Environment; JSAIMM; Minerals and Metallurgical 
Processing; Minerals Engineering

• Tool for researchers: Searchable summaries

• Category and application

• Method, inputs, outputs, hyperparameters

• Success and implementation



Hype
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Implementation Count
Experimental data 105
Simulated data 8
Industrial data 40
Industrial implementation 24

Success Count
Yes 141
Limited 35
No 1

Category Count
Fault detection and/or diagnosis 30
Data-based modelling 40
Machine vision 107

177 technique applications



Data-based modelling
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Data-based modelling techniques

PCA, PCR, PLS
kNN, k-means clustering

CART, RF
SVM, SVR, ANN, ELM

QTA

Fast, easy 
measurements

eg flow rate
pressure

temperature
spectra

Slow, difficult 
measurements

eg composition
size distribution

mill load
equipment failure

Supervised learning

Trends
Soft sensors

Industrial 
implementation: 
relatively mature

Challenges
Non-stationary

Nonlinear
Multiple modes
Missing values

Faulty and noisy values
Sampling times

Time lags
Correlation

Opportunities
Deep neural networks

Adaptive retraining
Qualitative trend 

analysis
Dynamic behaviour



Fault detection

PCA, kPCA, ELM-PCA
LLE

SVM
Process 

measurements

flow rate
pressure

temperature
spectra

Process state

normal or faulty

Fault diagnosis

Contribution plots, Variable importance
Cross-correlation matrix

Graph learning
Granger causality

Fault cause

symptom and/or
causal variables

Fault detection and diagnosis

Page 14

Unsupervised learning

Trends
Industrial data (not 

implementation)
PCA and modifications

Challenges
Data scarcity

Benefit assessment
Implementation

Opportunities
Root cause analysis

Diverse data
Prognosis



Image processing techniques

filtering, thresholding
edge detection, segmentation
morphological transformations

colour analysisImage/video data

flotation froth
ore on conveyor
falling particles
grinding media

Process 
parameters

particle/bubble size
froth speed

mineral composition
operating modeFeature extraction techniques

PCA
GLCM, LBP, WTA

cross correlation matrix
ANN, CNN

Data-based 
modelling 
techniques

Machine vision
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Unsupervised learning

Trends
Simple industrial 
implementation 
relatively mature
Texture features

Challenges
Surface-only
Limited state 
information

Labelled images 

Opportunities
Crowd-sourced labelling

Deep nets
Diverse data

Supervised learning



Golden rules

• Hyperparameter sensitivity and guidelines

• Show sensitivity to hyperparameter selection

• Guidelines relating hyperparameters to industrial context

• Data diversity and explicit model validity

• Training data should include entire expectation of process data variation

• Model predictions should include metric to indicate level of certainty / extrapolation

• Comparison to simple and/or fundamental models

• Numerical motivation should be given for complex models

• Compare to simpler techniques

• Incorporate fundamental knowledge

Page 16



Future directions

• Build the business case

• Data-based modelling / machine vision: Similar to economic motivation for control

• Fault detection and diagnosis: More complicated

Page 17



Future directions

• De-risk the method

• Thorough robustness analysis

• Availability of benchmark industrial datasets

• “UCI ML repository” archive.ics.uci.edu/ml for mineral processing

• Control loop data repository: sacac.org.za/Resources

• Availability of benchmark simulation datasets

• “Tennessee Eastman process” for mineral processing

• Simulation repository: github.com/ProcessMonitoringStellenboschUniversity

Page 18



Future directions

• Train the humans

• Engineers of today and tomorrow need to be data science literate

• Not necessary to be an expert in machine learning

• Basic understanding of goals and types

• Ability to communicate requirements for new solutions

• Ability to critically assess the results (check golden rules)

• At undergraduate and professional levels

• Challenge: Lack of domain-specific resources (e.g. examples, textbooks)

• Good place to start:  www.statlearning.com

Page 19

Domain knowledge + Machine learning = 
Better solutions



Machine Learning at Process Engineering

20

Dynamic simulation
• Control

• Disturbances
• Noise

• Economic impact

Soft sensors
• Computer vision

• Supervised 
learning

Sensor network 
design

Fault libraries

Condition 
monitoring

Process monitoring and fault diagnosis
• Unsupervised learning

• Root cause analysis
• Robustness and adaptation



Dynamic simulation and fault libraries

Dynamic simulation

• Falling film evaporator

• Base metal refinery

• Grinding circuit 

• Pulp digester

Fault libraries

• Base metal refinery

• Grinding circuit

21



Sensors

Sensor network design

• Spiral concentrator plant

Soft sensors

• Computer vision – Flotation

• Computer vision – Ore/pellet size

• Computer vision – Spiral slurries

22



Fault detection and diagnosis

Process monitoring and fault diagnosis

• Data reconciliation and gross error detection

• Root cause analysis with causality maps

• Batch process monitoring (PCA and PLS)

• Nonlinear unsupervised learning (ANN, KPCA, SVM, 
etc.)

• Economic performance functions

• Dynamic Bayesian networks

• Gaussian mixture models

23



Adaptive process monitoring

24



Adaptive process monitoring
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Condition monitoring

26



Urban Mines: Recycling valuable metals from e-waste

1. Sustainability and recycling of batteries

2. Rare earth elements

3. Waste printed circuit boards



Sustainability

28

“Humanity has the ability to make development sustainable to 
ensure that it meets the needs of the present without 

compromising the ability of future generations to meet their 
own needs.”

Brundtland, G.H., Report of the World Commission on Environment and
Development: Our Common Future, 1987



Recycling

• Reduces future scarcity of high demand elements

• Creates economic value

• Reduces greenhouse gas emissions and limits other environmental harm

• Aids the transition to a green economy

• Provides a source of metals for sustainability-enhancing technology

29



Designed materials make recycling hard

UNEP (2013) Metal Recycling: Opportunities, Limits, Infrastructure, A Report of the Working Group on 
the Global Metal Flows to the Inter- national Resource Panel. Reuter, M. A.; Hudson, C.; van Schaik, A.; 
Heiskanen, K.; Meskers, C.; Hagelüken, C.
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Recycling: there are limits

UNEP (2013) Metal Recycling: Opportunities, Limits, Infrastructure, A Report of the Working Group on 
the Global Metal Flows to the Inter- national Resource Panel. Reuter, M. A.; Hudson, C.; van Schaik, A.; 
Heiskanen, K.; Meskers, C.; Hagelüken, C.
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South African context

32

• SA landfills ~ 90% of waste

• DEA – National Norms and Standards (landfill)

• DST RDI Waste Roadmap – 2022 Scenario reduce industrial waste by 20% 
from 2011 baseline

• 11% of WEEE recycled (2011 baseline)

• Value of WEEE waste (collector → recycler) R/t 1000

• 2022 scenario – recycle 50% of WEEE (32 023 t/y)

• Lithium ion battery consumption ~ 10 000 t/y 2020 (2750 t/y LiCoO2)

• Preliminary economic study shows that a 2.5% levy on purchase cost results 
in capital payback time of 5 years

Source: DST A National Waste Innovation Programme for South Africa: Phase 2 Waste RDI Roadmap



SU context – research into the urban 
mine

Disassembly / size 
reduction Physical separation Base metal leach Precious metal 

leach
Electronic waste

Solvent extractionElectrowinning

Ion exchange / 
adsorption

Precious metal 
production

Plastic 
components

Magnetic 
materials



SU metals recycling projects

• Effect of mechanical pre-treatment on leaching of base metals from printed circuit board waste

• Gold leaching from printed circuit board waste using ammonium thiosulphate

• Evaluating the applicability of the GlyLeach process for metal leaching from printed circuit board 
waste

• Base and precious metal recovery from glycine leach solutions using solvent extraction / ion 
exchange / carbon adsorption

• Investigating options for thermal treatment of PCB waste and its effect on downstream metal 
recovery processes

• Investigating the use of PCB leach residue as reductant in pyrometallurgical operations

• Evaluating the efficiency of metal recycling processes by means of life cycle assessment and exergy 
analyses

• Evaluating economics of metal recycling from PCB waste in a South African context

• Recycling rare earth elements from fluorescent lamps

• Development of an environmentally friendly lithium ion battery recycling process

34



Sustainability and recycling of batteries

• Batteries convert chemical to electrical energy

• Global battery market ~ $65 billion (70% rechargeable)

• Expected to grow to $100 billion by 2025 (WEF Global Battery Alliance)

• Lithium ion battery market grew by 15% (CAGR) between 2005 and 2015

• Significant use of “critical metals” in rechargeable batteries means recycling is 
of great importance  - Co is an example

• Recycling of rechargeable batteries still in its infancy

• 6.7% collection rate of rechargeables in EU (2008)

• Growth of HEV market and EU directives on recycling require urgent 
development of recycling technologies

35



Batteries

UNEP (2013) Metal Recycling: Opportunities, Limits, Infrastructure, A Report 
of the Working Group on the Global Metal Flows to the Inter- national 
Resource Panel. Reuter, M. A.; Hudson, C.; van Schaik, A.; Heiskanen, K.; 
Meskers, C.; Hagelüken, C.36



Lithium ion batteries
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• Lithium ion batteries widely used in EEE devices e.g. cell-phones, laptops,  HEVs



Global context

38

• Drivers for recycling

• Metal values

• Scarcity and geopolitical concerns – Co (DRC) , Li (Argentina, Bolivia, Chile)

• Lower resource use than for primary sources

• European Battery Directive – 45% collection rate by 2016

Source 
https://www.weforum.org/
agenda/2017/09/global-
battery-alliance-child-
labour-congo



Environmentally-benign hydrometallurgical 
flowsheets to recover value metals separately

• Organic acids are effective leaching reagents for metal recovery from LIB 
cathodic material yielding over 95% metal recoveries

• 95% Co, 96% Li and 99% Ni
• Metals recovery from LIB citrate leach solutions is possible through solvent 

extraction
• Our current area of research

39



1M Citric acid

1. Feed/Cathodic active material

Reductive leaching: 95 
Degrees Celsius, 20 g/L 
pulp density, 750 rpm, 

30 mins

2% v/v Hydrogen 
peroxide

Filtration 2. Tailings

Solvent extraction: pH 
2.5, O/A ratio 5, room 
temperature, 300 rpm, 

5 mins

10% v/v D2EHPA,
10M NaOH

Stripping: O/A ratio 3, 
room temperature, 

300 rpm,5 mins

0.5M 
Sulphuric acid

4. Stripped D2EHPA

Phosphate 
precipitation: pH 13-14, 
50 Degrees Celsius, 250 

rpm, 120 mins

5. Co, Ni phosphates

0.5M Mono-sodium 
phosphate, 10M 

NaOH

Phosphate 
precipitation: pH 13-14, 
80 Degrees Celsius, 250 

rpm, 120 mins

0.5M Mono-sodium 
phosphate, 10M 

NaOH

7. Effluent6. Li phosphate

3. Mn solution

Filtration

Filtration

40



Recycling rare earth elements from 
fluorescent lamps

• Production and usage of fluorescent lamps rapidly increased over the past decades

• 4,800,000 lamps were scrapped in 2011 (Zhang, 2012)

• Fluorescent lighting relies mainly on six REEs: Y, La, Eu, Ce, Tb and Gd

• 0.2-2.3 g/lamp

• ±7,650,000 kg REO applied in fluorescent powders annually

• Rare earth elements (REEs) used in alloys, magnets, batteries, lasers, glasses…

• Chinese production accounts for >85% of global REE market

• China restricts supply through quotas, licences, taxes

• Less than 1% of REE  recycled in 2011 (Binnemans and Jones, 2014)

• Most preferred method of recovering REEs from powders is hydrometallurgy

41



REEs in fluorescent lamps

42



REE Extraction

43

Sample Preparation

Waste Characterisation

Y and Eu Leaching

Sample Preparation

Alkali Fusion

Ce and Tb Leaching

• Particle size analysis
• XRD 
• Aqua regia leaching 

Conditions
• Lixiviant : H2SO4 acid
• S/L ratio :10%(w/v)
• Agitation speed : 600rpm
• Temperature : 30,60,90°C
• Concentration : 2M,3.5M,5M

Conditions
• Lixiviant : HCl acid
• S/L ratio :10%(w/v)
• Agitation speed : 600rpm
• Temperature : 30,60,90°C
• Concentration : 1M,3M,5M

Conditions
• Temperature : 800±3°C 
• Residue : NaOH ratio -1:1.5
• Time : 2hours

REEs Solvent extraction



Proposed flowsheet
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1st  leaching

Wet Sieving and 
Drying (<25µm)

washing

Solvent extraction 
and Stripping

2nd leaching

Waste Phosphor 

Filtrate

Alkali fusion 

NaAlO2

3.5M H2SO4

S/L=1/10
60°C

45min

Residue:NaOH=1:1.5
800°C ± 5°C

2 hours

5M HCl
5 % (w/v)

60°C
30 min

1M DEHPA
pH= -0.25 

25°C
O/A ratio = 1

Residue

1M DEHPA
pH= 0.5 

25°C
O/A ratio = 1

1

13

Residue

72

15

4

18

19

16

Solvent extraction 
and Stripping

Filtrate

Precipitation

Ca,Al and Trace 
amounts of 

Ce,Tb 

22 24

23

17

Y2O3, Eu2O3, Tb2O3,CeO2

Ca and other 
impurity metals

Y2O3

Trace 
amounts of Y 

5M H2SO4

5M H2SO4

1M DEHPA
pH= 0.5

25°C
O/A ratio = 1

Solvent extraction 
and stripping 8

20

Calcination 6

H2C2O4

Calcination

H2C2O4

25

Ca,Al and 
other 

impurity 
metals

3

10

Y2O3, Eu2O3

Al and Other 
impurity 
metals

5M H2SO4

Calcination 12

H2C2O4

9

5

Precipitation

11

Precipitation14

21

Glass



Business models for gold recovery from 
WPCBs

45



UNEP (2013) Metal Recycling: Opportunities, Limits, Infrastructure, A Report of the Working Group on 
the Global Metal Flows to the Inter- national Resource Panel. Reuter, M. A.; Hudson, C.; van Schaik, A.; 
Heiskanen, K.; Meskers, C.; Hagelüken, C.



Business scenarios

• 400 tonnes/yr recycling 
WPCBs

• Medium grade WPCBs 
(250 g/t Au)

• Tax 28%

• WACC 12.6% (South 
African Reserve Bank 
statistics, 2018)

• Project life 20 years

• 312 days/annum

47

Collection and 
dismantling

Shredding and 
comminution

Solder leaching

Copper 
extraction

Polishing solids
(Nitric acid 

wash)

Gold extraction



Business scenarios
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Key findings

49

• All business models displayed great sensitivity to :

• Gold content in WPCBs 

• Operating costs

• Gold revenues and recoveries

• Operating below name plate capacity

• At 250 g/t under conditions studied all models remained unviable

• Additional metals recovery unviable

• Secure a reliable source of high grade WPCBs for this process

• Prioritise collection of e-waste

• Consider having a central distribution system

• Homogenise pricing and classification in the country



Mineral processing done better?

• Yes

• Better data, better experts, better methods, better 
performance

• New recycling technologies, recyclable products, smaller 
footprint, enhanced sustainability

50
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