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Evolution – add video

Acknowledgements: Cheney, Nick, Robert MacCurdy, Jeff Clune, and Hod Lipson. "Unshackling evolution: evolving soft robots with multiple materials and a 
powerful generative encoding." ACM SIGEVOlution 7, no. 1 (2014): 11-23.
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A Predictive Model from the Agricultural Industry
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Decision Trees



More Algorithms



Results

94% accuracy obtained with 
a random forest algorithm

Acknowledgements: Yolandi Le Roux; University of Pretoria
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Customer Segmentation by means of Data Science
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Other Projects

• Developing a recommender system for a wellness program
• Predicting port delays from wind, wave and other data
• Predicting manufacturing system quality
• Predicting energy requirements in the hospitality industry

Acknowledgements: Lumi Dreyer; Andries Engelbrecht; Ridhaa Beneveld; Sibusiso Khoza; Cecil Musisinyani; Philip du Plooy; University of Pretoria
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Optimization

• Objective function

• Decision variables

• Constraints

Prescriptive Analytics
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Scheduling
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Scheduling

Minimize
- Makespan
- Queue time
Maximize
-Customer service



Entrance Exit

Hybrid Flow Shop Scheduling Problem
Flexible Job Shop Scheduling Problem

“Multiple Resources per Operation” Models



Optimization Literature Example



Source: http://community.asdlib.org/imageandvideoexchangeforum/

The Local Search Algorithm
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But why do we have to pick one 
algorithm?

and

Why can’t we let the algorithm 
pick the algorithm?



…

• 24 algorithm variations

• 60 diverse problems 

• 24 000 hrs of processing time
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Results interpretation
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Results interpretation
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Impact

•68% improvement when compared with state-of-
the-art algorithms

• At 40 hrs per design experiment and eliminating 5 
experimental designs, you save 220 development 
hours per algorithm application





Preliminary Results
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