

UNIVERSITEIT·STELLENBOSCH·UNIVERSITY jou kennisvennoot·your knowledge partner

Advanced analytical techniques for industry

André de Villiers

Department of Chemistry and Polymer Science Stellenbosch University ajdevill@sun.ac.za www.sun.ac.za/chemistry

S IOO Introduction to the Department

- The Department of chemistry is **115** years old this year!
- 24 academic and 4 research staff; 28 support staff.
- Approximately **130** post graduate students
- We house **3** Research Chairs (2 SARCHi Chairs and the SASOL Chair of Analytical Polymer Science)
- **75%** of our academic staff have a rating from the National Research Foundation (NRF):

2004

2 - A rated (leading international researchers), 5 - B rated, 7 - C rated and 4 - Y rated scientists

Offer undergraduate BSc degree in Chemistry and Polymer Science

- MSc (Chemistry)
- MSc (Polymer Science)
- PhD (Chemistry)
- PhD (Polymer Science)

S100 II5 years of chemistry at Stellenbosch...

The lecturers and third-year students of **1923** – the very first final-year class in the new De Beers building.

Staff and postgraduates in **2018**

- R48 Million (about €3.8 Million) invested in physical infrastructure over the last 5 years
- Mostly on upgrading the research labs
- Department is spread over **5** buildings

De Beers

Mike De Vries

Polymer Science

Inorganic

General Chemistry Building

NMR Spectrometers

300, 400 & 600 MHz 500 MHz (Solid state)

X-Ray diffraction

BRUKER SMART APEX single crystal X-ray BRUKER APEX DUO single crystal X-ray BRUKER D8 VENTURE with a Photon II detector and I(mu)S 3 source PANalytical X'pert Pro powder X-ray diffractometer, Cu source, Multiple stages and Variable Temperature for Capillaries BRUKER D2 desktop powder X-ray

Thermal Analysis

DSC Q20 **DSC Q100 TGA Q500**

Other

Leco Pegasus HRT GCxGC-MS HPLC, 2D-LC, LC-MS CRYSTAF SEC, HT-GPC FFF FTIR, FTIR microscope UV PALS

S Publication output 2010-2015

Polymer ScienceChemistryTotal010263864011294574012434790013425092014294466015295180		
010263864011294574012434790013425092014224466015295180		
011294574012434790013425092014224466015295180	010	
012434790013425092014224466015295180	29	
013425092014224466015295180	012 43	
D14224466D15295180	013	
015 29 51 80	014	
	015	
otal 191 275 466	otal	
450 400 350		
47% of publications are in the top 20% of journals in their field		

Postgraduate degrees 2010-2015

	Poly	Polymer Science		Chemistry		Total		
	Scie							
	MSc	PhD	MSc	PhD	MSc	PhD	140	
2010	7	9	3	3	10	12	120	
2011	6	7	12	10	18	17	100	
2012	6	11	8	8	14	19	80 60	
2013	5	7	10	10	15	17	40	
2014	4	3	11	4	15	7	20	
2015	11	4	9	7	20	11	0	
Total	39	41	53	42	92	83		2

MSc (Polym) PhD (Polym) MSc (Chem) PhD (Chem)

Postgraduates students 2019:

	MSc	PhD	Hons
Chemistry	19	45	6
Polymer Science	20	20	7
Total	39	65	13

S International research collaborations

Broad research strengths

• **Synthetic methodology** aimed at creating useful new compounds and materials (catalysts, polymers and supramolecular networks, with application potential in gas separation and storage, membranes and biologically active compounds)

• **Separation technology** and advanced analysis (NMR spectroscopy, electro-analysis, chromatographic separations, atomic force microscopy, diffraction techniques, MS, ICP, CRYSTAF, GPC, etc.)

• Chemical structural modelling, employing force fields and quantum mechanics.

S Inorganic & Physical Chemistry

R

Selwyn Mapolie

Synthetic Organometallic Chemistry, Homogeneous Catalysis, Dendrimer Chemistry, Polymer Chemistry.

Robbie Luckay

Bulk liquid membranes, Transport, Extraction, Macrocycles, Stability Constants

Rehana Malgus-Enus

Inorganic Synthesis, nano-catalysis, homo-heterogeneous catalysis

Catharine Esterhuysen

Structural chemistry, Computational Chemistry, Crystallography

Jan Dillen

Structural chemistry, computational chemistry, molecular modelling, quantum mechanics, force fields, crystallography

Willem Gerber

Kinetics, Thermodynamics and Quantum mechanics mechanistic studies of Inorganic redox reactions

S Polymer, Organic & Medicinal Chemistry

Bert Klumperman

Living Radical Polymerization, Advanced Macromolecular Architectures, Nanomedicine

Willem van Otterlo

Organic synthesis, organometallic reagents, ring-closing metathesis, medicinal chemistry

Prinessa Chellan

Organometallic Medicinal Chemistry, Synthesis, Infectious Diseases, Drug Design, Bioinorganic Chemical Biology

Peter Mallon

Polymer analysis, polymer structure property relationships and polymer hybrid materials, polymer nanocomposites and nanofibres

Gareth Arnott

Organic synthesis and methodology, calixarenes, resorcinarenes, new transition metal ligands,

asymmetricreactions

An upper-rim inherently chiral calix[4]arene

A bidentate resorcinarene ligand

Katherine de Villiers

Bioinorganic/biophysical chemistry to elucidate structure-activity relationships for antimalarials

Supramolecular & Analytical Chemistry

Harald Pasch

Novel multidimensional techniques for polymer characterization; field flow fractionation; polyolefins, structureproperty relationships

Len Barbour

Physical, Inorganic, Organic, Materials, Solid-state, Gas Storage, Crystal Engineering

André de Villiers

Liquid chromatography, Gas chromatography, Wine chemistry, Mass spectrometry, Electrophoresis

Tanya le Roex

Supramolecular chemistry, crystal engineering, inclusion compounds, hydrogen-bonded organic frameworks

Klaus Koch

Platinum NMR, Acylaroylthiourea chemistry, PGM chemistry

S Len Barbour: Supramolecular Chemistry

Study of the dynamic processes that occur in the porous solid state by developing and applying a range of complementary *in-situ* analytical methods.

jou kennisvennoot • your knowledge partner

S An organic humidity indicator

Structure-property correlations

S Polymer analysis: Harald Pasch

The LEGO Approach in Advanced Polymer Analysis

The LEGO Approach: Coupled techniques

NIVERSITEIT • STELLENBOSCH • UNIVERSITY ou kennisvennoot • your knowledge partner

S Analytical approach and suitable techniques

S The LEGO Approach in Field-Flow Fractionation

NMR

S The limitations of chromatography

Limitations of I-dimensional chromatography

Peak capacity (n_c) : Number of compounds that can theoretically be separated.

A. Felinger, Data Analysis and Signal Processing in Chromatography, Elsevier, 1998

To resolve 98% of *n* randomly distributed components, n_c should be $n \times 100$

 $G(L)C \times G(L)C$: For comprehensive combination of orthogonal separations, $n_{c,2D}$ is multiplicative

S The challenges of complex sample analysis

GC×GC: Principles and instrumentation

conventional short, high speed 2-10 seconds > 100 Hz (FID, TOF-MS)

Orthogonal separations obtained using apolar and (mid)-polar columns

u kennisvennoot • your knowledge partner

Animation courtesy of T. Gorecki

GC×GC-TOF-MS analysis of honeybush tea

Peak True - sample "Mac-C5-R3 A2:1", peak 180, at 840 , 2.420 sec , sec

GC×GC-TOF-MS analysis of honeybush tea

G. E. Ntlhokwe et al., J. Chromatogr. A 1536 2018 137

GC×GC-TOF-MS analysis of honeybush tea

Likely responsible for the characteristic cassia/cinnamon aroma of this species

cinnamaldehyde uniquely detected in **C. maculata** - cassia cinnamon aroma.

Chemistry & Polymer Science STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

G. E. Ntlhokwe et al., J. Chromatogr. A 1536 2018 137

SGC×GC-high speed high resolution TOF-MS

S LC×LC: Principles and instrumentation

Two dimensions operated independently

Second dimension separation completed during fraction collection

First dimension flow stopped during second dimension separation

Solution On-line HILIC×RP-LC-UV-Q-TOF-MS analysis of red wine pigments

Son-line HILIC×RP-LC analysis if wine pigments

S Comparison of pigment profiles

□ Anthocyanin-glucosides (15)
○ Anthocyanin-di-glucosides (5)
△ Oligomeric Anthocyanins (5)

Anthocyanin-tannin
adducts (15)
Acetaldehyde-mediated
tannin adducts (16)
Δ Vinylflavanol condensation
products (12)

- \Box Oxovitisins (3)
- \circ Pyruvic acid derivatives (6) Δ Acetaldehyde derivatives (4)

Anthocyanin-phenol derivatives (3)
∆ Anthocyanin-guaicol derivatives (4)
◊ Anthocyanin-syringol derivative (1)

C.M. Willemse et al., Anal. Chem. 87 2015 12006

S Method development in LC×LC

Method development in LC×LC

M. Muller et al., J. Chromatogr.A 1571 2018 107

SHILIC×RP-LC-Q-TOFMS: Wine flavonols

The incentive for improved separation methods provided by demands of fields such as proteomics, metabolomics and natural product analysis

ID (U)HPLC does not provide adequate performance.....MSⁿ hyphenation!

LC×LC offers higher performance, but remains insufficient....MSⁿ hypheration

Comprehensive 3-dimensional separations?

A.W. Moore, J.W. Jorgenson, Anal. Chem. 67 1995 3456

- Time-based (^tLC×^tLC×^tLC)
- Space-based (*LC×*LC×*LC)
- Combination (^tLC×^tLC××LC)

E. Davydova et al., J. Chromatogr.A |27| **20|3** |37

Peak capacity

 $n_{components} > 10^2 - 10^3$ $n_{c,required} \gg n_{components}$ $n_{c,1D} \sim 10^2 - 10^3$

 $n_{c.2D} \sim 10^3 - 10^4$

$$n_{c,3D(t)} \sim 10^3$$

 $n_{c,3D(t)} \sim 10^4$

 $n_{c,3D(t,s)} \sim 10^5$

MSⁿ hyphenation Department of Chemistry & Polymer Science kennisvennoot • your knowledge partner

S Ion mobility-Mass spectrometry (IMS-MS)

S LC×LC×IMS-MS analysis of wine phenolics

Advanced analysis has become indispensable in chemical research and manucturing.

- Quality control, safety
- Structure-property relationships
- Improving product quality
- Enabling research progress

New developments continuously improving on established techniques

- Improved sensitivity, resolving power, hyphenation possibilities
- But, these advanced techniques are often complex and require dedicated expertise to exploit their benefits

The Department of Chemistry at Stellenbosch is very well equipped in terms of both instrumentation and expertise to make a significant contribution in this field in SA

S Thank you for your attention

www.sun.ac.za/chemistry

