Managing variability – key to a renewable energy future

Dr Bernard Bekker 7 June 2019

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

The Centre for Renewable and Sustainable Energy Studies was established in 2007 to facilitate and stimulate activities in renewable & sustainable energy study and research at Stellenbosch University.

The Department of Science and Technology has been funding the Energy Research Programme (ERP) at Stellenbosch University since its establishment in August 2006.

Stellenbosch University was designated as the Specialisation Centre in Renewable Energy as part of the Eskom Power Plant Engineering Institute (EPPEI), focusing primarily on the integration of renewable energy technologies into the national electricity grid, and includes the Eskom Chair in Power System Simulation.

> TRAINING Facilitate, coordinate and fund the training of students, interns and industry

FLAGSHIP PROJECTS Initiate and drive national flagship projects

RESEARCH

Influence research focus areas and unlock research funding opportunities

> AWARENESS Increase public and institutional awareness and understanding

CONSULTING Conduct contract research and specialist consulting projects

The traditional power system

• One of the largest and most complex machines ever built

The future power system

variability

/vɛːrɪəˈbɪlɪti/

noun

1.lack of consistency or fixed pattern; liability to vary or change.

The future power system

variability

/vɛːrɪəˈbɪlɪti/

noun

1.lack of consistency or fixed pattern; liability to vary or change.

Roadmap

Solar resource

2018 Draft IRP PV by 2030: ~10.6 (8+3) GWp

Solar resource

Solar resource for Cape Town

UNIVERSITEI

PV basics

D

300 GHI (kWh/m2) 250 200 150 100 50 0 N 1 F M A M A S 0 1 1 Month 1838 kWh/m2/a 6% to 22% efficiency

PV basics - materials

Mono-crystalline 13% - 22% Poly-crystalline 11% - 18% Amorphous thin-film 6% - 12%

PV basics - orientation

300 GHI (kWh/m2) 250 200 150 100 50 0 F S 0 N D 1 A M A M 1 1 Month 1838 kWh/m2/a Vertical South West Elevation: Fixed Azimuth: Fixed East North Electrical energy from PV panel in year 0 0 deg elevation Electrical energy (kWh/m2) 30 25 20 15 10 5 0 E M D A M 5 N J A Month 231 kWh/m2/a

2005 total monthly irradiation at site

PV basics - orientation

2005 total monthly irradiation at site

PV basics - orientation

West

Azimuth: Fixed

North

300 GHI (kWh/m2) 250 200 150 100 50 0 0 N 1 F S D M A M A 1 1 Month 1838 kWh/m2/a Vertical South Elevation: Fixed East Electrical energy from PV panel in year 0 60 deg elevation

2005 total monthly irradiation at site

PV basics - shading

※ ⊥

PV system configurations

Degradation: 0.5% per year

PV & hybrid system configurations

System availability: 98%

PV losses

2005 total monthly irradiation at site

Electrical energy from PV panel in year 0 - 0 deg elevation

System sizing

Energy consumption per month

System sizing

Energy contributions from PV array

System sizing

Batteries to increase self-consumption

Store in batteries instead of exporting, and use later

Storage – technical aspects governing ROI

• Lead-acid versus Li-ion?

forces 27m house it

Quarterly Energy Storage Deployment Share by Technology (MW %)

Roadmap

By MBizon - Own work Originally derived from de:Datei:Stromversorgung.png, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9676556 PV and batteries on distribution networks

- PV on distribution networks increasing
 - 85% of PV capacity in Germany is produced by installations < 1MW
 - 98% of installed PV (~40GW) connected to LV and MV networks
- Batteries and electric vehicles on LV and MV increasing
 - Eskom currently rolling out 360MW / 1440MWh batteries

SSEG PV: 415MWp by end 2017

Economist.com

aswa & Bekker 2018, IMPACT OF PV SMALL SCALE EMBEDDED GENERATION ON SOUTH AFRICA'S SYSTEM DEMAND PROFILE I Pérez Arriaga and C. Knittel et al, Utility of the Future. An MIT Energy Initiative response. 2016. PORS – Carel Ballack

 Distributed generation and storage increases the risk of "islanding": where islands of power remain after technicians have switched off network sections

- Traditionally current flowed in one direction: from power stations to loads
 - Networks designed to maintain voltage and currents within specific bounds

• Future flow bi-directional: impacts difficult to model / predict

 Short-term solution: simplified connection criteria limits PV installation size
All LV PV installations limited to these sizes (unless further

	Editor (1 Number of	1 Number of 2						
		phases	Service circuit-breaker circuit	3	(1200 V) feeder				
		1	size	NMD	Maximu 4				
		1	20 A	kVA	individual generation line				
		1	60 A	4,6	kVA kVA				
		3	80 A	13,8	1,2				
FRID INTERCONNECTION OF EMBEDDED			60 A and 80 A	18,4	3,68				
art 2: Small-scale em ection 3: Simplified u or low-voltage conne	bedded generation utility connection criteria ected generators	4.2.4 In the case of individual generation	feeders, any generator greater of LV customers with supplies of limit in a share	r than 4,6 k	VA should be balanced across				
n daarwel dies vat haw he didas af s	Suit Allue Neural Stretzet	100 × 25 % = 25 kVA	0 kVA NMD supplied throug of generation. Since 25 kVA	teater than 25 % of the h a share is greater	those given in table 1, the maximum customer's NMD. For example, a LV d LV feeder could connect up to than the 20 kVA limit for a sk				

• Long-term solution: intelligent inverters that automatically assist the network to maintain QoS

Roadmap

By MBizon - Own work Originally derived from de:Datei:Stromversorgung.png, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9676556

- In electric power systems a direct interdependency between supply and demand exists: no buffers
 - traditionally little control over demand, so supply must be controlled, or "dispatched"

http://energylive.aemo.com.au/Energy-Explained/Managing-frequency-in-the-power-system Supply chain management presentation, https://www.slideshare.net/hari3hhh/e-scm-45891860

- Optimal dispatch complicated by variable renewable energy (VRE)
 - VRE definition includes both variable (predictable) and intermittent (non-predictable) variations

• Only at higher levels of penetration does power system stability become a challenge

Instantaneous intermittent RE Penetration level

• As VREs increase, forecasting becomes a critical aspect

• Grid code and Integrated Resource Plan allocations also become critical

	Coal	Nuclear	Hydro	Storage Punped Toraget	PV .	Wind	CSP	Gas / Diesel	Other Salars, Normal, Landille	Embedded Generation
2018	39126	1 860	2 1 96	2.912	1 474	1980	100	3 830	495	Linknow
2019	2 155	1				244	300			20
2020	1.433				114	300				20
2021	1.433				300	818				20
2022	711				400					20
2023	500									20
2024	500									20
2025					870	300				20
2026					1 000	1500		2 250		20
2027					1 000	1600		1 200		20
2028					1.000	1600		1800		20
2029					1.000	1 600		2 850		20
2030			2 500		1 000	1 600				20
TOTAL INSTALLED	33 847	1 860	4 5 9 6	2 912	7 958	11 442	600	11 930	499	263
Installed Capacity Mix (Ni)	44.6	2.5	6.2	м	10.5	15.1	0.9	15.7	0.7	
Installed Commit New Add Embedd	Capaci ted / Ali ditional led Gen	ty ready Co Capacit eration	ontract y (IRP Capaci	ed Cap Update ty (Ger	acity) heratio	n for o	wn use	e alloca	tion)	

 Understanding of the aggregation effect of siting of Independent Power Producers

Fig. 9.23 Spatial distribution of solar photovoltaic site clusters obtained using Ward's method for 17 clusters.

Chris Joubert and Prof Johan Vermeulen 2017 - Geographical Location Optimisation of Wind and Solar Photovoltaic Power Capacity in South Africa using Mean-variance Portfolio Theory and Time Series Clustering

Cluster 3: 10 Sites

Other system operator challenges

• Optimal dispatch not the only challenge...

Time constant/ time period

Roadmap

By MBizon - Own work Originally derived from de:Datei:Stromversorgung.png, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9676556

Conclusions

TRADITIONAL POWER SYSTEM

For a successful transition

- Manage variability through:
 - Improved technology & data analytics
 - Updated regulations and standards
- Continuous dialogue between stakeholders are key
 - Academia Industry collaboration
 - EPPEI specialisation centre in RE
 - Eskom chair in Power System Simulation
 - Scatec Solar chair
 - Muncipality University forum

Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", 2009 Adapted from National Education Development Project (public domain) http://www.eaton.com/RU/ecm/groups/public/@pub/@ftc/documents/content/pct_1760115.jpg

Questions?

Dr Bernard Bekker

Associate Director

Centre for Renewable and Sustainable Energy Studies | Faculty of Engineering

Universiteit Stellenbosch University

e: bbekker@sun.ac.za | t: +27 21 808 4041 | c: +27 82 581 5004 a: K406, CRSES, 4th floor, Engineering Knowledge Centre, 155 Banghoek Rd, Stellenbosch Central, 7600, South Africa